Advanced Image Processing and Analysis

Course
2020-2021
Semester
2
ECTS
6
Type
Compulsory
University
UDC and UPorto

Subject objectives

-Study and application of advanced digital image processing techniques.
-Study and application of advanced techniques of digital image analysis.
-Analysis of real problems, and design and development of solutions based on advanced image processing and analysis technologies.
-Evaluation of the adequacy of the methodologies applied in specific problems.

This curricular unit addresses the most advanced topics in image processing and analysisand presents itself as a sequence of a curricular unit where the fundamental topics arepresented. It is designed to provide the essential foundation for students wishing topursue research in this area. In addition to the study and application of advancedtechniques of image processing and analysis, applications in this area are studied thataim to solve real problems. This approach gives students the necessary tools to apply the algorithms studied in practical cases, as well as the basis for developing new algorithms.

Contents

-Advanced denoising
Total variation

-Advanced edge detection
Bilateral filter
Anisotropic diffusion
Phase congruence

-Advanced segmentation
Deformable models
Level-set methods
Markov Random Fields
Graph cuts

-Learning-based segmentation
Active shape/appearance models

– Salience and attention models

-Selected topics on advanced image processing and analysis
Semantic segmentation
Multi-view enhancement
Superresolution
Inpainting
Coloring
Photo stitching
Background removal

Basic and complementary bibliography

Basic:
Gary Bradski, Adrian Kaehler (2008). Learning OpenCV. O’Reilly

David A. Forsyth, Jean Ponce (2002). Computer vision: a modern approach. Prentice- Hall

Richard Szeliski (2010). Computer vision: algorithms and applications. Springer

Simon J.D. Prince (2012). Computer Vision: Models, Learning, and Inference. Cambridge University Press

Ian Goodfellow, Yoshua Bengio, Aaron Courville (2016). Deep learning. MIT Press

Competencies

CE1 – To know and apply the concepts, methodologies and technologies of image processing
CE3 – To know and apply the concepts, methodologies and technologies of image and video analysis
CE4 – To conceive, develop and evaluate complex computer vision systems
CE5 – To analyze and apply methods of the state of the art in computer vision

CB6 – To possess and understand knowledge that provides a basis or opportunity to be
original in the development and/or application of ideas, often in a research contextB5 CB10 – That students possess the learning skills to enable them to continue studying in a largely self-directed or autonomous manner

CG2 – Ability to analyze a company’s needs in the field of computer vision and determine the best technological solution for it
CG3 – Ability to develop computer vision systems depending on existing needs and apply the most appropriate technological tools
CG5 – Ability to identify unsolved problems and provide innovative solutions
CG7 – Ability to learn autonomously for specialization in one or more fields of study

Teaching methodology

Laboratory practice:
Analysis and resolution of practical cases using techniques learned in the lectures.

Objective test:
Test with questions about the theoretical contents of the subject as well as practical problems.

Guest lecture / keynote speech:
Oral presentation (using audiovisual material and student interaction) designed to transmit knowledge and encourage learning.

See Contengency Plan for Alternative Scenarios.

Evaluation system

-Objective test (40):
Written test with theoretical questions and practical problems to be solved.
Competences:CB6 CG3 CG5

-Laboratory practice (60):
Two assignments that consist of the development of image processing and computer vision applications. It will be
assessed the suitability of the proposed solutions and the quality of the obtained results.
Competences: CE1 CE3 CE4 CE5 CG2 CG7

See Contengency Plan for Alternative Scenarios.

Studying time and personal work

Recommended study time for students is about 2 hours per week. Additionally, we estimate that they should spend about 6,5 hours / week working in a number of assignments. All of these activities add up to around 120h/semester.

Subject study recommendations

Subjects that it is recommended to have taken before:
Fundamentals of Machine Learning for Computer Vision /614535007
Fundamentals of Image Analysis and Processing/614535001
Image Description and Modeling/614535004

Subjects that are recommended to be taken simultaneously:
Visual Recognition/614535005
Advanced Machine Learning for Computer Vision/614535008

Observations

Contingency plan:
1. Modifications to the contents – There are no changes
2. Methodologies – All teaching methodologies that are maintained – Laboratory practice – Guest lecture/keynote speech – Objective test
3. Mechanisms for personalized attention to students
– Email: daily to answer questions and schedule virtual meetings.
-Moodle: daily, depending on the needs of the students
-Teams: daily, depending on the needs of the students and one weekly session in group to assess the learning progress
and the development of the assignments.
4. Modifications in the evaluation – There are no changes
5. Modifications to the bibliography or webgraphy – There are no changes